
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

4

2

Traversing a Linked List
Suppose START points to the first node in the linked list. The
following algorithm will visit all nodes from the START node to
the end.
1. If (START is equal to NULL)

(a) Display “The list is Empty”
(b) Exit

2. Initialize TEMP = START
3. Repeat step 4 and 5 until (TEMP is equal to NULL)

4. Display “TEMP →DATA”
5. TEMP TEMP →Next

6. Exit

3

Algorithm for searching a value
Suppose START is the address of the first node in the linked list and
DATA is the information to be searched. After searching, if the DATA is
found. Found pointer will contain address of the found node.

1. Input the VALUE to be searched
2. Initialize TEMP = START

3. Repeat step 4, 5 until (TEMP is equal to NULL)
4. If (TEMP →DATA is equal to VALUE)

Found = TEMP
Exit

5. TEMP = TEMP →Next

6. If (TEMP is equal to NULL)
Display “The data is not found in the list”

8. Exit
4

Algorithm for deleting a node
We can Delete nodes in the Linked List based

on the value or information contained in a node.

 There are three possibilities:
– The node to be deleted is the first node in the

linked list
– The node to be deleted is the last node in the

linked list
– The node to be deleted is in the middle of the

linked list

5

Steps
involved in
Delete node
from front
of a linked
List.

6

 Node to be deleted is in the start

7

 Node to be deleted is the Last node

8

 Node to be deleted is in the middle of the linked
list

9

 Suppose START is the first position in linked list. Let DATA be the element to be
deleted. TEMP and PTR are temporary pointers to hold the node address.

1. Input the VALUE to be deleted
2. if ((START →DATA) is equal to VALUE)

(a) PTR = START
(b) START = START →Next
(c) Set free the node PTR, which is deleted
(d) Exit

3. TEMP = START
4. while ((TEMP →Next →Next) not equal to NULL))

(a) if ((TEMP →NEXT →DATA) equal to VALUE)
(i) PTR = TEMP →Next
(ii) TEMP →Next = PTR →Next
(iii) Free (PTR) //Free the memory of the deleted node
(iv) Exit

(b) TEMP = TEMP →Next
5. if ((TEMP →next →DATA) == VALUE)

(a) PTR = TEMP →Next
(b) Set free the node PTR, which is deleted
(c) TEMP →Next = NULL
(d) Exit

6. Display “VALUE not found”
7. Exit

// if Data may be in the
middle node

// if Data is in First Node

// if Data is in LAST
Node

10

	Slide Number 1
	Slide Number 2
	Traversing a Linked List
	Algorithm for searching a value
	Algorithm for deleting a node
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

